Exponential Smoothing
Weighted average methods where recent observations have more influence than older ones.
| Model | Description |
|---|---|
ETS | Error-Trend-Seasonality state space model |
AutoETS | Automatic ETS with component selection |
SES | Simple Exponential Smoothing |
SESOptimized | SES with optimized smoothing parameter |
Holt | Linear trend method |
HoltWinters | Trend + seasonality |
SeasonalES | Seasonal exponential smoothing |
SeasonalESOptimized | SeasonalES with optimized parameters |
ETS (Error-Trend-Seasonality)
State space model with explicit error, trend, and seasonal components.
Parameters
| Parameter | Type | Default | Description |
|---|---|---|---|
error | VARCHAR | 'A' | Error type: A (Additive), M (Multiplicative) |
trend | VARCHAR | 'A' | Trend type: A, M, N (None) |
seasonal | VARCHAR | 'A' | Seasonal type: A, M, N |
seasonal_period | INTEGER | - | Seasonal period (required if seasonal != 'N') |
Example
SELECT * FROM anofox_fcst_ts_forecast(
'sales_data',
'date',
'sales',
'ETS',
28,
MAP{'trend': 'A', 'seasonal': 'A', 'seasonal_period': '7'}
);
Best for: Trending + seasonal data, smooth patterns.
AutoETS
Automatic ETS with component selection using information criteria.
Parameters
| Parameter | Type | Default | Description |
|---|---|---|---|
seasonal_period | INTEGER | auto | Seasonal period (auto-detected if not specified) |
confidence_level | DOUBLE | 0.90 | Prediction interval width |
Example
SELECT * FROM anofox_fcst_ts_forecast(
'sales_data',
'date',
'sales',
'AutoETS',
28,
MAP{'seasonal_period': '7', 'confidence_level': '0.95'}
);
Best for: Most common use case, default choice for trend + seasonality.
SES (Simple Exponential Smoothing)
Weighted average of past observations with exponentially decreasing weights.
Parameters
| Parameter | Type | Default | Description |
|---|---|---|---|
alpha | DOUBLE | auto | Smoothing parameter (0-1) |
Example
SELECT * FROM anofox_fcst_ts_forecast(
'stable_data',
'date',
'value',
'SES',
14,
MAP{}
);
Best for: No trend, no seasonality, stationary data.
SESOptimized
SES with automatically optimized smoothing parameter.
Example
SELECT * FROM anofox_fcst_ts_forecast(
'stable_data',
'date',
'value',
'SESOptimized',
14,
MAP{}
);
Best for: Stationary data with automatic parameter tuning.
Holt (Linear Trend)
Extends SES to capture linear trends.
Parameters
| Parameter | Type | Default | Description |
|---|---|---|---|
alpha | DOUBLE | auto | Level smoothing |
beta | DOUBLE | auto | Trend smoothing |
Example
SELECT * FROM anofox_fcst_ts_forecast(
'trending_data',
'date',
'value',
'Holt',
28,
MAP{}
);
Best for: Linear trending data without seasonality.
HoltWinters
Extends Holt to include seasonality (additive or multiplicative).
Parameters
| Parameter | Type | Default | Description |
|---|---|---|---|
seasonal | VARCHAR | 'additive' | 'additive' or 'multiplicative' |
seasonal_period | INTEGER | - | Seasonal period (required) |
Example
SELECT * FROM anofox_fcst_ts_forecast(
'retail_sales',
'date',
'sales',
'HoltWinters',
52,
MAP{'seasonal': 'multiplicative', 'seasonal_period': '7'}
);
Best for: Clear trend + seasonality patterns.
SeasonalES
Seasonal exponential smoothing without trend component.
Parameters
| Parameter | Type | Default | Description |
|---|---|---|---|
seasonal_period | INTEGER | - | Seasonal period (required) |
Example
SELECT * FROM anofox_fcst_ts_forecast(
'seasonal_data',
'date',
'value',
'SeasonalES',
28,
MAP{'seasonal_period': '7'}
);
Best for: Seasonal patterns without trend.
SeasonalESOptimized
SeasonalES with optimized parameters.
Example
SELECT * FROM anofox_fcst_ts_forecast(
'seasonal_data',
'date',
'value',
'SeasonalESOptimized',
28,
MAP{'seasonal_period': '7'}
);
Best for: Seasonal patterns with automatic parameter tuning.
Comparison
| Model | Trend | Seasonality | Parameters |
|---|---|---|---|
| SES | No | No | alpha |
| SESOptimized | No | No | auto |
| Holt | Yes | No | alpha, beta |
| HoltWinters | Yes | Yes | alpha, beta, gamma |
| SeasonalES | No | Yes | alpha, gamma |
| SeasonalESOptimized | No | Yes | auto |
| ETS | Configurable | Configurable | Full state space |
| AutoETS | Auto | Auto | Automatic selection |
When to Use AutoETS
AutoETS is recommended as the default choice for most forecasting tasks:
- Automatically selects error, trend, and seasonal components
- Handles both additive and multiplicative patterns
- Produces prediction intervals
- Fast and reliable