Skip to main content

Generalized Linear Models

Models for non-Gaussian response distributions: Poisson GLM and ALM (Augmented Linear Model).


Poisson GLM

Generalized Linear Model for count data (event counts, defects, arrivals).

Parameters

ParameterTypeRequiredDefaultDescription
yDOUBLEYes-Count target (non-negative integers)
xLIST(DOUBLE)Yes-Predictors
optionsMAPNo-fit_intercept, max_iterations, tolerance

Example

SELECT
production_line,
(model).coefficients[2] as temperature_effect,
exp((model).coefficients[2]) as rate_ratio,
(model).p_values[2] as pvalue
FROM (
SELECT
production_line,
anofox_stats_poisson_fit_agg(
defect_count,
[temperature, humidity, shift_hours]
) as model
FROM quality_data
GROUP BY production_line
);

Interpretation: Coefficients are on log scale. exp(coefficient) = rate ratio (multiplicative effect).


ALM - Augmented Linear Model

Robust regression supporting 24 error distributions for non-normal data.

Parameters

ParameterTypeRequiredDefaultDescription
yDOUBLEYes-Target values
xLIST(DOUBLE)Yes-Predictors
optionsMAPYes-distribution, fit_intercept, max_iterations, tolerance

Supported Distributions

DistributionUse Case
normalStandard regression
student_tHeavy tails, outliers
cauchyExtreme outliers
laplaceLAD (median) regression
huberRobust with breakdown
weibullSurvival, reliability
gammaPositive, right-skewed
log_normalMultiplicative errors

Example

SELECT anofox_stats_alm_fit_agg(
revenue,
[marketing_spend, competitor_activity],
MAP {
'distribution': 'student_t',
'fit_intercept': 'true'
}
) as model
FROM sales_with_outliers;

When to use ALM:

  • Data has heavy tails or outliers
  • Non-normal error distributions
  • Robust estimation needed
🍪 Cookie Settings