Generalized Linear Models
Models for non-Gaussian response distributions: Poisson GLM and ALM (Augmented Linear Model).
Poisson GLM
Generalized Linear Model for count data (event counts, defects, arrivals).
Parameters
| Parameter | Type | Required | Default | Description |
|---|---|---|---|---|
y | DOUBLE | Yes | - | Count target (non-negative integers) |
x | LIST(DOUBLE) | Yes | - | Predictors |
options | MAP | No | - | fit_intercept, max_iterations, tolerance |
Example
SELECT
production_line,
(model).coefficients[2] as temperature_effect,
exp((model).coefficients[2]) as rate_ratio,
(model).p_values[2] as pvalue
FROM (
SELECT
production_line,
anofox_stats_poisson_fit_agg(
defect_count,
[temperature, humidity, shift_hours]
) as model
FROM quality_data
GROUP BY production_line
);
Interpretation: Coefficients are on log scale. exp(coefficient) = rate ratio (multiplicative effect).
ALM - Augmented Linear Model
Robust regression supporting 24 error distributions for non-normal data.
Parameters
| Parameter | Type | Required | Default | Description |
|---|---|---|---|---|
y | DOUBLE | Yes | - | Target values |
x | LIST(DOUBLE) | Yes | - | Predictors |
options | MAP | Yes | - | distribution, fit_intercept, max_iterations, tolerance |
Supported Distributions
| Distribution | Use Case |
|---|---|
normal | Standard regression |
student_t | Heavy tails, outliers |
cauchy | Extreme outliers |
laplace | LAD (median) regression |
huber | Robust with breakdown |
weibull | Survival, reliability |
gamma | Positive, right-skewed |
log_normal | Multiplicative errors |
Example
SELECT anofox_stats_alm_fit_agg(
revenue,
[marketing_spend, competitor_activity],
MAP {
'distribution': 'student_t',
'fit_intercept': 'true'
}
) as model
FROM sales_with_outliers;
When to use ALM:
- Data has heavy tails or outliers
- Non-normal error distributions
- Robust estimation needed